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AXISYMMETRIC CONTACT PROBLEM IN THE PRESENCE OF A WEDGE* 

V.A. svF.luo 

The integral equation of the axisymmetric contact problem, obtained in a new form, 
is used to investigate the case when thin smooth rigid axisymmetric wedges (posts) 

are inserted into the bodies making contact along their common axis Of sy!llIlletq. 

Singularities are established in the solution , particularly the possibility of the 

origination of negative drawing together of the bodies and the annularpressure do- 
main under the action of a flat stamp of circular planform on the half-space. 

1. Action of a wedge and an overload on a half-space. Let a thinsmoothcircular 
wedge of radius h (2) be introduced on a section L along the z -axis on a half-space o >O,and 
let a normal load p(p) act on its boundary z -0. Determine the state of stress and strainof 

the half-space. It is assumed that the required elastic displacements of its points are con- 
strained at infinity. 

The complex potentials corresponding to the problem formulated can be found if potentials 
for the corresponding plane problem /1,2/ and the relation between the solutions of the plane 
and axisymmetric problems /3/ are used. We obtain 

W(Q)= !zqoJz- S~(~)(q~- F)-'dq (1.1) 

Y' (62) = 2q@i-’ ; s - #’ Pl) (tl + w* a + f P* (rl) (rl” + Q~W~] 

D = z $ i& E = plow@, q. = 2~ (1 f k,)", k, = p (k + p)-* 

Here p*(q) is the transform of p(p) in the sense of /3/. 
The solution is written in displacements in the form 

The angular 

ingly, we deduce 

(1.2) 

11.3) 
‘8 ’ 
P = 39 + y2, a = cos 8, k+ = k,, i- =’ 1 + k, 

brackets denote integration with respect to Q between 0 and 2s. Correspond- 

The remaining stress components are also easily found. 
It is seen from [l.l)- (1.4) that the solution of the problem under consideration 

tained by superposition of solutions corresponding to the action of just the wedge and 
the load. 

We shall later need values of @, Y corresponding to the action of just a normal 

is ob- 
just 

lumped 
load, distributed uniformly along a circle of radius R and having a result equal to P, on the 
half-space. 

(1.4) 
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Since h(z) = 0, we deduce at once: CD'(B) = 0. The values of Y'are related to evaluation 
of the integral in which 

P* (rl) = 
0, lrll<R 

(Zn)-l [(q2 - R*)-‘J+,‘, 1 q I> R 

However, it is simpLer to 
dition 

It can be rewitten in the 

Here the branch taking on 
sidering the required function 
continuation 

find the function directly by starting from the boundary con- 

ReY’ (t) = p* (g), t = is 

form 

ReY’ (t) = -(2x)-*P [(t* + R2)-'4t 

the value t for large t is understood under the radical. Con- 
Y(g) to vanish at infinity, we deduce as a result of analytic 

Y (Si) = -(Zn)-‘P (SF + !?y:1 

Substituting the values found for the complex potentials into (1.3) and then lnto (1.21, 
we obtain 

W(P,O)== 
P (Zn)-* q;” ((R* - pa cos* 0)-“*), P<R (1.5) 
P(zn)-2q;':(p~- R*Cos%)-'~*), P>R 

(m (Pt 0) -InIp----RI. p--R) 

The elastic displacements of points of the half-space boundary in the directions of the 
x and y axes corresponding to the load under consideration of particular form, are zero. 

2. Integral equation of the axisymetric contact problem for h(z)=& It is 
known that the problem in the Hertz formulation reduces to seeking the axisymmetric normal 
pressure pfp) in a circle, ring (or in their combination) under the condition that the elastic 
displacements normal to the boundary axe given in the domain mentioned. 

Let a circle of radius P1 lie entirely in the pressure domain. Then we have a uniformly 
distributed lumped load with resultant 2np(p,)P,dp, at points of this circle and a correspond- 
ing displacement of half-space points normal to the boundary dw. Integrating with respectto 
p1 between the limits 0 and 6 (when the pressure domain is a circIe of radius b), we derive 
an integral equation of the axisymmetric contact problem under consideration by using the 
relationship (1.5) 

D 

(5 P(P1)(P'- p,*cos*0)-“xp, dp, + 
0 

i P(Pl)(Pl"--. 
0 

P%OS*e)-'/~p,dPl) Z!(P) 

(2.11 

f tB, = 2%W (P, 0) 

Its solution is known and is determined under the conditions that f{p) and f'(p) are 
continuous in the interval 0 <p.Q b, by the formula /4/ 

p (P) = (24-I [F (b) (b’ - p8)-“* - 
P 

(2.2) 

Let us show that the relationship (2.2) turns (2.1) into an identity. Indeed, after sub- 

stitution, interchange of the order of integration, and evaluation of the inner integrals, we 

obtain 

(~)-1(P(&)X(p:~:~)+~F'(r)l(p:a;8)L~ SbI'(r)X(p:r:8)dr)=!(p) 
D P 

(1.31 
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Y. (Pi tl; 0) = (2 WW'la I p Sin 0 - (+-p*)‘h i p sin9 + (q*-p*)“’ ) + 
n/2 - arctg [p (+-pW/‘sin e] - T (P: ‘1; 6) 

T(p;~;e)=(2c0se)-~lnIp--00se~p~rleoseI-~ 

Integration by parts reduces equation (2.3) to the form 

F ($1 (P' - ~a)-‘/% a f (p) 

2 

which proves the assertion /4/. 

3. Axisymmetric contact problem in the presence of a wedge. Let two bodies of 
revolution, initially tangent at one point 0, be subjected to compressive forces p directed 
along the common normal at the point 0 to surfaces bounding the bodies and axisymmetric thin 
smooth wedges (slits) directed along the same normal Fig-l. It is assumed that the slits are 
strictly within the bodies, and the dimensions of the pressure area are small compared to the 
body size so that the latter can be replaced by half-spaces. 

At the point 0 directing the zi(j = 1,2) axes along the mentioned 
normal into the bodies making contact, we obtain the total normalelastic 
displacements of the boundary points of the bodies because of their de- 
formation 

I ’ Here ~~(1) are the elastic displacements due to body compression,and 

% w,(z) are the displacements because of the action of the wedges. 
Reasoning in the usual manner, we deduce the fundamental relation- 

Fig.1 ship /4/ 

w1 + WS = & - 21" (P) - zaO (P) (3.2) 

Here a is the approach of the bodies, while zjO(P) are known and determined by givingthe 
body shapes prior to deformation. 

After replacement of the bodies by half-spaces, the problem reduced to seekingthetotal 
pressure p(P) in a circle, ring, or their combination. The displacements w,(*) hence become 
known. 

For given wedge shapes and locations on the axes, we obtain /2/ 

wJ2'(p*O) = s h,'(rl)(PZ + r12)-"*I)dtl 
9 

The displacements governed by the pressure are written, for instance, in the case when 
the pressure domain is the circle O,<P<bJ are written in the form (2.1). Therefore sub- 
stituting into (3.21, we derive an integral equation of the axisymmetric contact problem in 
the presence of wedges 

<i p (Pl) (p” - placos2w'vl~Pl + 
0 

b 

s p (Pl) (p?- p2co~‘w’vl dp1 > =f1(p) 
P 

fl (P) = 2~ (410 + q20) [a- il, {zj” + j, hj’ (11) (q’ + PY"? dll}] 

If fl (P) aa fl’ (p) are continuous in the interval 0< pQ b, then this solutioniswritten 
in the form (2.2). 

For a given b the approach a is found from the condition of equivalence of the pressure 
to the compressing force P. In the case of boundedness of the solution for 
the additional condition F(b) - 0 governing the magnitude of b. 

p = b , we have 

4. Action of a stamp and a wedge on a half-space. 
the problem of the combined action on a half-space, 

As an illustration,weexamine 
of a stamp of circular planform aa a 

circular wedge of constant section of radius h that occupies a segment 
along the z axis. 

H, < s G H2r HI > 0 
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This latter can be obtained fromawedgewith conical ends by a passage to the limit. 
On the basis of /2,4/ as well as (3.3) we have 

zp = 0 (i = 1, 2), gno = 0, qso = qo, w2 = 0 
ZQ (p, 0) = HI (p' + H*~)-'l~ - HP (p2 + N+'l' 

fl (p) = 2nq, [a i h {H, (p* -I- H*yl, - HI (p” + HP)-“=}] 

(4.1! 

Since fl(p), fl‘(pf are continuous in the interval Ogp< b, then the solution of (3.4) 
under the condition that the required pressure is non-negative in the interval mentioned is 
written in the form (2.2). We find 

P (p) = 49, {a f k [Hze (p2 + Ha*)-’ - H: (p2 + HI~)-‘I) (4.2) 

In recent years, the dimensionless quantities n (2qJ1p (p), alb, &lb, klHf, plHj, blHf,g$b are 
understood to be, respectively, the quantities p (p), a, k,.k,, ~1, bj, p. In these notations the re- 
quired dimensionless pressure calculated by means of formula (2.2) is written in the form 

P (~1 = Ia + k @z - +)I ti - p5)+ t- xn (p) - ~1 (p) 
XJ (p) = kl(l -I- p,*)-'/*(arctg [(b,* - p*)'l:(l f p&"~l + 

Q](1 + fJj')y* (bja - p,')'/*}, al = (1 + bla)-’ 

(4.3) 

For k = 0 we obtain the known solution 14/. 
Let us indicate the sufficient condition ofpositivenessofthe pressure p(p) determined 

by formula (4.3) in the interval O< pQ b. We consider the function 

@I (P) = [a + h(a, - 41 (1 - p*)-‘fi - xl(p) (4.4) 

It can be established that @l'(p)>& i.e., @i(p) is a monotonically increasing func- 
tion in the interval mentioned. Hence, %((pfaO if @1@)>0. Under this condition we 
have 

p(p) = @1(P) i- xz (P) > 01 XI(P) B 0 

Thus, for the non-negativity of p(p) in the interval O< p< 1 it is sufficient to 
satisfy the inequality 

% (0) = a - h ($1 + a,&) > 0 (4.5) 

$ (2) = r am% 2, 91 = 4 (bl) (i = 1, 2) 

From (4.5) there follows that a20 for any H,,b,R',>O. 
Let P be the compressing force on the stamp. Denoting the dimensionless compressing force 

nP/(2q,,b*) by the same letter, we write a relationship governing the approach betweenthebod- 
ies a by using (4.3) a(cp(zc)is monotonically decreasing function) 

P = a + k (tpo - cp& cp (x) = ~0 arctg r, Q = 9 (b,} (4.6) 

Substituting the value of cx: from (4.6) into condition (4.5) we write it in the form of a 
constraint imposed on the force compressing the stamp 

J' > k(rp, - '~1 + 41 4 s&z') (4.7) 

Let us examine the case of a semi-infinite wedge: 'H, = a), H,> 0. We obtain 

b, = x, = qe = 0, a, = (pp = 1 

Condition (4.5) becomes here necessary also. 
The solution (4.3) is written in the form 

P(P) = (a + ha&la) (1 - ps)+ - XI (p) (4.8) 

if the following inequality holds 
P>hU - 9% i-91) 

If it is violated (the force compressing the stamp is not large enough), a gap is formed 
between the stamp and the deformed boundary of the half-space in the neighborhood of thepoint 

s = 0, the area of the pressure acquires the shape of a flat ringwithan unknowninnerbound- 
ary and the pressure distribution under the stamp must be sought be starting from this condi- 

tion. We do not consider this in this paper. 
We note that the solution (4.8) retains meaning even in the limit case when H1eO under 

the condition that P +o. Indeed, in the limit we have 
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b, = co, a1 = 0, alb,'= i, k = 91 = 0 
The equations (4.6) and (4.8) are written in the form 

P = a + h, p (p) = (a + h) (1 - p’)+ 

We hence deduce an expression for the pressure 

P (p) = P (i - p+, OL = P - h 

It is seen that at all points of the circle, with the exception of the center,itagrees 
with the ordinary pressure. At the center of the circle, i.e., for p= O,H,-0, as is seen 
from (4.8) the pressure becomes unlimited. For P<h the approach of the bodies cc turns out 
to be negative. 

We obtain another part'icular case by letting the solution H, in (4.3) approach zero under 
the condition that P #O. Here x* = a, = 0, and the solution (4.3) takes the form 

P (6’) = (a + “a,) (1 - P’)-“’ + x&G, P = a + hv, 

under the condition that a+/+>& i.e., a=P-hr+,>O. It will even be satisfied for nega- 
tive a if the force P satisfies the condition 

h (cpz - a~) <P < +, 

For P<h(cp, -aa,) we should set a-+-hcr,=o and the solution will be written in the form 

P (P) = %e @) 
The unknown b2 governing the size of the pressure domain is found from the equation 

P - h (cpl - al) = 0 

which has a unique solution for given P. 

For p=O and H,- 0 the solution (4.3) does not tend to a finite limit. 
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